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Abstract

The identification of the number and locations of acoustic sources is a fundamental problem of
engineering acoustics. The method of multiple signal classification (MUSIC) has been widely used to solve
this problem. The main drawback of the MUSIC method is that the unavoidable measurement noise should
be identical for all the channels of measurement system. This requirement generally cannot be met in
practical application. In this work, a method was proposed to identify the number and locations of multiple
incoherent sources. The proposed method was based on the traditional MUSIC method, however, without
the basic assumption about the identity of the measurement noise. Besides, a procedure was proposed to
improve the calculation efficiency of identification. The numerical and experimental results demonstrated
that the identification accuracy of the proposed method was far better than that of the traditional MUSIC
method. The results also demonstrated that the proposed calculation procedure was very efficient, only the
data at a few frequencies should be used for identification.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of the number and locations of acoustic sources is a fundamental problem in
noise control. This subject has been investigated extensively in the past, and some methods have
been proposed. Although the main function of near-field acoustic holography (NAH) is not to
see front matter r 2004 Elsevier Ltd. All rights reserved.
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identify the number and locations of acoustic sources, one can find out the locations of sources
from the identified particle velocity field [1–4]. However, NAH only functions well for sources
with simple geometry; otherwise, NAH should be combined with the boundary element method to
identify the sources with irregular geometry [5–7]. Besides, in NAH, the measurement must be
very close to the sources, about one-half wavelength. This requirement often cannot be met in
practice due to different reasons. For instance, the measurement sensor may affect the flow field if
the sensor should be placed very close to the aeroacoustic source. Another problem is that if the
locations of the sources are not known in advance, how can one place the sensor close to the
sources within one-half wavelength?

If only the number, not the positions, of incoherent sources should be identified, the
most powerful method is to find the rank of the cross-spectral matrix of the signals measured
by pressure transducers [8,9]. The number of incoherent sources is equal to the rank of the
cross-spectral matrix. This method is called cross-spectral matrix (CSM) analysis in this work
for convenience. The locations of sources are more difficult to identify than the number
of sources. As discussed by Schmidt [10], the method of multiple signal classification
(MUSIC) is superior to the methods of ordinary beam forming, the maximum likelihood
and the maximum entropy in the identification of the source positions. However, the main
drawbacks of the MUSIC method are: (1) the sources should be incoherent, (2) the auto-spectrum
of the measurement noise should be identical for all the measurement channels. In the past, the
spatial-smoothing technique [11] has been used successfully to suppress the interference of
multiple coherent signals. In other words, with the spatial-smoothing technique, the assumption
of incoherence is no more a problem for the MUSIC method. However, the assumption about the
auto-spectrum of the measurement noise is still a main limitation of the MUSIC method. One
knows that this assumption generally cannot be fulfilled in the practical application. This
limitation is due to the fact that the MUSIC method in principle is an eigenanalysis method. Only
when the auto-spectrum of the measurement noise is identical for all the measurement channels,
the eigenvalues of the cross-spectral matrix of measurement signals can be classified into two
groups, i.e., the signal-plus-noise and noise segments. As best as we know, no report has been
published to solve this limitation of the MUSIC method. Besides, because the MUSIC method is
operated in the frequency domain, the source locations should be searched at every frequency of
interest. It is very time consuming.

In this work, a method was proposed to identify the number and locations of multiple
incoherent sources in space. The proposed method was based on the traditional MUSIC method,
however, without the basic assumption about the identity of measurement noise. Besides, a
procedure was proposed to improve the efficiency of finding the locations of sources. The
accuracy and feasibility of the proposed method were verified by numerical simulation and
experiment.
2. Theoretical formulation

Fig. 1 shows schematically the model of the problem investigated in this work. There are n
incoherent sources distributed in the space, and there are m microphones to measure the radiated
pressure. The number and locations of the sources are not known, and should be identified by
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Fig. 1. Model of the investigated problem.
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using the signals measured by the microphones. As mentioned, the method proposed in this work
is based on the traditional MUSIC method. The traditional MUSIC method and the CSM
analysis should be given briefly here in order to show clearly the connection with the proposed
new method.

2.1. Identification of source number

As shown in Fig. 1, a vector fPg ¼ fp1; p2; . . . ; pmg
T is used to represent the Fourier components

(or spectra) of the pressure signals measured by the m microphones. As to how to determine the
number of microphones, m, will be discussed later. Because the measurement noise is unavoidable,
the {P} vector can be written as

Pf gm�1 ¼ P0f gm�1 þ Wf gm�1; (1)

where {P0} represents the exact value and {W} represents the measurement noise.
The cross-spectral matrix (or the covariance matrix) of the measured signals can be written
as [8,9]

Cp

� �
m�m

¼ Pf gm�1 � Pf gH
m�1 ¼

c11; c12 � � �

c21;

..

.

c22 � � �

cm1 � � � � � �

c1m

c2m

..

.

cmm

2
666664

3
777775

m�m

; (2)



ARTICLE IN PRESS

J.H. Wang, C. Chang / Journal of Sound and Vibration 284 (2005) 393–420396
where the superscript H represents the complex conjugate of transpose. One can use
singular value decomposition (SVD) to get the eigenvalues and eigenvectors of the Cp

� �
matrix as

Cp

� �
m�m

¼ Up

� �
Sp

� �
Up

� �H
; (3)

where Up

� �
is an unitary matrix of eigenvectors and Sp

� �
is a diagonal matrix containing

the positive eigenvalues li; i ¼ 1; . . . ;m; in descending order. The rank of the Cp

� �
matrix

represents the number of principle components of that matrix, and thus represents the number
of incoherent sources. If the number of measurement microphones, m, is larger than the
number of incoherent sources, n, then the rank of the Cp

� �
matrix should be less than m.

Theoretically, the rank of a matrix is defined as the number of non-zero eigenvalues. However, the
{P} vector is perturbed by noise, so are the eigenvalues in Eq. (3). To find the exact number of
incoherent sources, a criterion was proposed in this work to determine the true rank of the Cp

� �
matrix from the result of SVD. Because the level of measurement noise depends on the instrument
used for measurement and also on the noise level of measurement environment (or the
background noise), the perturbation of the eigenvalues also depends on the above two factors.
Consequently, the threshold value which is used to eliminate the ‘‘insignificant’’ eigenvalues
caused by noise should be determined according to the measurement accuracy which one can
realize in practice. In this work, the following procedure is proposed to find the true rank of the
Cp

� �
matrix:
(a)
 The eigenvalues of the Cp

� �
matrix at all the frequencies of interest are found first by SVD.

The maximum eigenvalue is indicated as lmax.� �

(b)
 The eigenvalues of the Cp matrix at each frequency are normalized with respect to lmax, and

only the normalized eigenvalues which are larger than 10�6 are accounted as the ‘‘true rank’’
of the Cp

� �
matrix at that frequency. The true rank is function of frequency, and one uses Ni to

represent the value of the true rank at the frequency fi.
Because the Up

� �
matrix in Eq. (3) is an unitary matrix, the magnitude of the eigenvalues

is directly related to the signal strength sensed by the microphones. The threshold value,
10�6, defined in this work means approximately that the dynamic range of the measurement
system is about 60 dB. Note that the main purpose of this work is to compare the
difference between the traditional and the proposed modified MUSIC methods, the threshold
value is not critical for this comparison because both methods use the same threshold value in this
work. Note that the true rank Ni at the frequency fi represents the number of sources which are
active at the frequency fi, it is different from the source number n defined in Fig. 1. For instance,
there are three sources in space, but only a source radiates frequency fi , then n ¼ 3; Ni ¼ 1: The
source number n can be known only when all the positions of sources are identified, as discussed
in Section 2.4.

If the rank of Cp

� �
at all the frequencies of interest is less than the number of measurement

microphones, the number of measurement microphones is sufficient to identify the number of
sources. In other words, the minimum number of the measurement microphones is so determined
to make to the rank of Cp

� �
less than the number of microphones.
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The above CSM method is not new, but the rank information from the CSM analysis will be
used later with the modified MUSIC method to identify the source number n and also to improve
the identification efficiency.
2.2. Identification of source locations

Before deriving the modified MUSIC method, the traditional MUSIC method should be given
briefly in order to expose the main shortcoming of the traditional MUSIC method, and to show
the connection with the modified method.

The so-called source strength (volume rate) is generally used to define the characteristic
of simple point source [12]. The vector {P} in Eq. (1) is related to the source strength
vector {X} by

p1

p2

..

.

..

.

pm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

m�1

¼

H11; H12; � � � � � � H1n

H21; H22; � � � � � � H2n;

..

. . .
. ..

.

..

. . .
. ..

.

Hm1; Hm2; � � � � � � Hmn;

2
66666664

3
77777775

m�n

x1

x2

..

.

..

.

xn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

n�1

þ

w1

w2

..

.

..

.

wm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

m�1

; (4)

where Hij is the frequency response function (or transfer function) between the ith microphone
and the jth source as shown in Fig. 1, xi is the source strength of the ith source, wi is the noise of
the ith measurement channel.

Eq. (4) can be written in a compact form as

Pf gm�1 ¼ H½ 	m�n Xf gn�1 þ Wf gm�1: (5)

Assume that the incident signals and the noise are uncorrelated, then the cross-spectral matrix can
be written as

Cp

� �
m�m

¼ H½ 	m�n Xf gn�1 Xf gH
n�1 H½ 	Hm�n þ Wf gm�1 Wf gH

m�1 (6)

or in a compact form as

Cp

� �
m�m

¼ H½ 	m�n Cx½ 	n�n H½ 	Hm�n þ Cw½ 	m�m (7a)

¼ Up

� �
Sp

� �
Up

� �H
: (7b)

Eq. (7b) is adopted directly from Eq. (3).
As discussed in Section 2.1, the number of active sources may vary with frequency. For

simplicity, it was assumed that the number of active sources was n in deriving the traditional and
the modified MUSIC methods. In other words, the rank of the noise-free Cp

� �
matrix was

considered as n in deriving the methods.
The traditional MUSIC method assumes that the noise at each measurement channel is

mutually uncorrelated, and the auto-spectral density functions at all measurement channels are
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identical. With this assumption, the ½Cw	 matrix is reduced to

Cw½ 	 ¼

s 0

s

s

. .
.

0 s

2
6666664

3
7777775

m�m

¼ s I½ 	m�m; (8)

where s is the value of the auto-spectral density function of measurement noise, and [I] is a unit
matrix. Note that the value s is function of frequency.

With the assumption of Eq. (8), one can prove [10] that the last (m � n) eigenvalues of Eq. (7b)
are repeated, and are equal to s; i.e.,

lnþ1 ¼ lnþ2 ¼ � � � ¼ lm ¼ s; (9)

If the (m � n) eigenvectors associated with the (m � n) repeated eigenvalues are indicated as {Ek},
k ¼ n þ 1; n þ 2; . . . ;m; then the eigenvectors {Ek} can satisfy the following condition [10]:

H½ 	Hm�n Ekf g ¼ 0: (10)

With the notation of Eq. (4), the [H] matrix can be rewritten as

H½ 	H 
 h1f gm�1; h2f gm�1; . . . ; hnf gm�1½ 	
H
m�n: (11)

The {hi} vector represents the transfer function between the ith source and all the
measurement microphones. The {hi} vector is function of frequency, the position of
the ith source, and the positions of the measurement microphones. For the investigated
problem, the positions of microphones are known, the only unknowns are the source
positions. Therefore, the result of Eq. (10) can be used to find the source positions. To
find the source positions, one can arbitrarily select a trial field point (indicated as ‘‘j’’ point),
and then calculate the transfer function h̄j

� �
between the trial field point and all the

measurement microphones. The traditional MUSIC method uses the h̄j

� �
vector to find a power

function Pm as

Pm j;oð Þ 

1Pm

k¼nþ1

h̄j

� �H
Ekf g

� �2
; j ¼ 1; 2; :::‘; (12)

where ‘ indicates the number of trial field points, and o is the frequency.
One knows that if the trial field point is the location of source, then theoretically the h̄j

� �
should be equal to one of the {hi} in Eq. (11), and the value of Pmðj;oÞ should be infinitely large
(according to the result of Eq. (10)). In other words, the positions of peaks of the Pmðj;oÞ
distribution represent the positions of sources.

The above derivation is the traditional MUSIC method. From the above derivation one can
find two main problems,
(1)
 The result of Eq. (10) is based on the assumption of Eq. (8). This assumption generally cannot
be fulfilled in practice because the noise includes the part which is sensed along with the signals
and the part which is generated internally by the measurement instrument.
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(2)
 The calculation of the Pmðj;oÞ is very time consuming. For instance, if the investigated space is
divided into one thousand trial field points, and there are two thousands discrete frequencies
in the frequency range of interest, then one should first calculate one thousand h̄j

� �
vectors,

and calculate the Pmðj;oÞ function 2� 106 times (i.e., 2000� 1000).
In this work, the MUSIC method was modified to solve the first problem and a new calculation
procedure was proposed to enhance the calculation efficiency.

2.3. Modified MUSIC method

Eq. (7a) can be rewritten as

Cp

� �
m�m

¼ H½ 	 Cx½ 	 H½ 	H þ

s1 0

s2

. .
.

. .
.

0 sm

2
6666666664

3
7777777775

m�m


 CxH½ 	m�m þ

s1 0

s2

. .
.

. .
.

0 sm

2
6666666664

3
7777777775

m�m

; ð13Þ

where s1as2a � � �asm; represent the auto-spectra of the measurement noise.
The first term in the right-hand side of Eq. (13) can be decomposed into eigenvalues and

eigenvectors by the SVD, and Eq. (13) becomes

Cp

� �
m�m

¼ Ux½ 	

a1; 0

a2;

. .
.

an

0

. .
.

0 0

2
6666666666664

3
7777777777775

Ux½ 	H þ

s1 0

s2

. .
.

. .
.

0 sm

2
66666664

3
77777775
; (14)

where Ux½ 	 represents the unitary matrix of eigenvectors of CxH½ 	 matrix and a1; a2 � � � an represent
the positive eigenvalues in descending order. Note again that it was assumed that the number of
active sources was n in deriving the method.
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The basic concept of the modified method is to derive a method which can adjust the measurement
noise levels into equal level according to the eigenvalues of the Cp

� �
matrix. In other words, one can

add an artificial noise to the measured Cp

� �
matrix to make the noise level at each measurement

channel to be equal. The proposed method is based on an important property of eigenanalysis of the
Cp

� �
matrix found in this work. The property is called ‘‘Property A’’ in the following discussion. As

mentioned, the number of active sources (or the true rank) may vary with frequency. For simplicity,
the number of active sources was assumed as n in discussing the ‘‘Property A’’.

Property A. Assume that sk is the largest value among the s1;s2; . . . ; sm in Eq. (14), and if an
arbitrary positive value is added to sk; then l̄nþ1

�
l̄mXlnþ1=lm:

Proof. Note that the li represent the eigenvalues of the Cp

� �
matrix in descending order, i.e.,

l14l24 � � �4lm; as indicated in Eq. (3). Adding an arbitrary positive value to sk in Eq. (14) is
the same as adding the positive value to the kth diagonal term of the Cp

� �
matrix. The eigenvalues

of the original Cp

� �
matrix are indicated as li; and the eigenvalues of the Cp

� �
matrix with a

positive value added to the kth diagonal term of the Cp

� �
matrix are indicated as l̄i:

Mathematically there are two possible results after adding a positive value to sk; i.e.,

l̄nþ1=l̄molnþ1=lm resultðaÞ;

l̄nþ1=l̄mXlnþ1=lm resultðbÞ: ð15Þ

As proved in Appendix A, result (a) is impossible. Result (b) is the correct result. &

One can use the result of Property A to adjust the diagonal terms of the Cp

� �
matrix to make

the noise levels to be equal and cause the last (m � n) eigenvalues to be repeated. The lnþ1 and lm

represent the largest and smallest eigenvalues induced by measurement noise, and are called the
largest and smallest noise-eigenvalues in this work. If the number of active sources (or the true
rank) is not n, then the value n in Eq. (15) should be replaced by the number of active sources. The
basic procedure to adjust the diagonal terms of the Cp

� �
matrix is to add (may be many times) a

small positive value to the first diagonal term of the Cp

� �
matrix, and check the ratio of the largest

noise-eigenvalue to the smallest noise-eigenvalue at each time of adding. When the ratio becomes
increasing (i.e., the characteristic of result (b) in Eq. (15)), the first diagonal term becomes the term
having the largest measurement noise, and a small positive value should add to the second
diagonal term, etc. The adjustment can converge quickly by a simple do-loop program. The
detailed procedure to adjust the diagonal terms of the Cp

� �
matrix is shown in Fig. 2. One can find

that the smallest eigenvalue, lm; of the original Cp

� �
matrix is used as the initial positive value, d;

for adjustment. This is because the result of Eq. (9) gives us a hint that the last (m � n) eigenvalues
are approximately the same order as the noise level. Thus, the lm is a proper initial value to adjust
the measurement noise levels. Of course, theoretically one can use any arbitrary positive value for
the adjustment. However, if the positive value is too small, then the convergent time will be too
long. On the contrary, if the positive value is too large, one cannot obtain a fine tune. As shown in
the left side of Fig. 2, the positive value, d; used for adjustment will automatically become smaller
and smaller after each turn of adjustment (i.e., from the first to the last diagonal terms) in order to
obtain a very fine tune. The convergent criterion used in this work is that the ratio of the largest
noise-eigenvalue to the smallest noise-eigenvalue should be smaller than 1.0001. When the
adjustment is converged, the conditions of Eqs. (9) and (10) can be satisfied, and Eq. (12) can be
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used to identify the source positions. In other words, the modified method proposed in this work
uses the converged Cp

� �
matrix to calculate the Pm value in Eq. (12).

Note that the Cp

� �
matrix is function of frequency. If the Cp

� �
matrix should be adjusted at

each frequency of measurement, it will be very time consuming. In this work, a procedure was
proposed to select only a few ‘‘important’’ frequencies for identification so that the adjustment of
the Cp

� �
matrix would not be a burden for the modified MUSIC method. This procedure will be

explained in the next section.

2.4. Calculation procedure with high efficiency

Both the traditional and the modified MUSIC methods use the Pm value in Eq. (12) to identify
the source positions. As mentioned, the calculation of the Pm value is very time consuming
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because the Pm value is function of trial field points and frequencies. A new calculation procedure
with high efficiency was proposed in this work. Instead of calculating the Pm value at all
frequencies, the basic concept of the proposed procedure is to select only a few ‘‘important’’
frequencies to identify the number and positions of sources. This is especially important for the
modified method because the modified method needs to adjust the Cp

� �
matrix only at these

important frequencies. How to select the ‘‘important’’ frequencies will be explained in the
following calculation procedure. The proposed calculation procedure is explained step by step in
what follows.
(1)
 Calculate the individual power spectrum of the signal measured by the individual microphone.

(2)
 Calculate an average power spectrum from the m spectra of step (1).

(3)
 Calculate the envelope of the average power spectrum first, and then find the

frequencies of local maxima of the envelope. The frequencies of local maxima are indicated
as f1, f2,y,fk.
(4)
 Plot the distribution of the true rank with frequency. The distribution has some local maxima,
and the frequencies of local maxima are indicated as fk+1, fk+2,y,fp.
(5)
 The values of the true rank at frequencies f1, f2,y,fp can be found from the true rank
distribution in step (4), and are indicated as N1, N2,y,Np.
(6)
 Calculate the spatial distribution of Pmðj;o1Þ at frequency f1. From the distribution of
Pm(j,o1) some local maxima can be found. The largest N1 maxima are regarded as the
locations of sources. The locations are indicated as S1,1, S1,2,y,S1,N1.
(7)
 Repeat the calculation of step (6) for other frequencies, f2,y,fp.

(8)
 All the locations obtained from frequencies f1,y,fp represent the locations of sources.

Because the locations of some sources may be identified repeatedly from different
frequencies, if there are only n different values of Si,j from all the Si,j, then the total number
of sources must be n.
The above eight steps are the proposed calculation procedure. The traditional MUSIC
method uses the original Cp

� �
matrix to calculate Pm distribution while the modified

MUSIC method used the converged Cp

� �
matrix to calculate the Pm distribution.

One can understand the calculation procedure more clearly only via examples in the next
section; however, the reasons for some steps should be explained here first. Because the
measurement microphones generally are arranged at the locations at which the source
signals can be clearly measured by the microphones, the average power spectrum obtained at
step (2) should be highly correlated with the spectra of the sources. The frequencies f1, f2,y,fk

obtained at step (3) can be regarded as the main frequencies of the sources. The reason for step (4)
is to find the other main frequencies of sources which may be not found at step (3). For instance,
the spectrum of a weak source may be overlapped (or covered) by the spectrum of a strong source
so that the characteristic of the weak source may not show clearly in the envelope of the average
spectrum. This is somewhat complicate, and will be explained further with an example in the next
section. Because the values of Pmðj;oÞ cannot be used directly to judge the location of sources, the
purpose of step (6) is to use the discrete data of Pmðj;oÞ to generate the spatial distribution of
Pmðj;oÞ in order to find the largest Ni local maxima. Note that the Ni value should be determined
first in step (5).
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3. Simulation results and discussion

Before discussing the experimental results, some examples of numerical simulation will be used
to show the effect of measurement noise on the identification results and to demonstrate the
advantage of the proposed method.

3.1. Form of measurement noise

Theoretically, one can assume an arbitrary noise to simulate the measurement noise. However,
in order to simulate the practical condition more realistically, a noise distribution which was
obtained from a practical measurement system was used in the numerical simulation. A
measurement system which included the microphone, amplifier and a spectrum analyzer was set-
up in an anechoic chamber. Without any source signal, an averaged power spectrum was
measured by the measurement system. The spectrum thus includes the noise of measurement
environment (or background noise) and the noise generated internally by the measurement
system. A typical power spectrum of noise is shown in Fig. 3. One can find that the spectrum is
fairly flat above 200 Hz. The relatively large value of noise below 200 Hz is mainly due to the
environment noise. The noise spectrum of Fig. 3 was multiplied by five arbitrary constants to
simulate the five noise spectra measured by the five channels of measurement system. A detailed
signal-to-noise ratio will be given in each example.
0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-13

10
-12

10
-11

10
-10

10
-9

Hz

(V
ol

t)2

Fig. 3. A typical power spectrum of measurement noise.
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3.2. Example 1, one-dimensional case

In order to show clearly the difference between the traditional MUSIC method and
the modified method, a one-dimensional case was discussed first because the distribution of
Pmðj;oÞ function could be plotted clearly in one-dimensional case. The model of the one-
dimensional case is shown in Fig. 4. There are three-point sources located in the X-axis
and five measurement microphones are located in the X–Y plane. The detailed coordinates of
sources and microphones are given in Table 1. As mentioned, source strength (volume rate) is
generally used to define the characteristic of simple point source [12]. The spectra of the source
strength are shown in Fig. 5. Basically the sources are narrow band random signals with central
frequencies at 400, 800 and 1000 Hz, respectively. According to the proposed calculation
procedure in Section 2.4, the envelope of the average spectrum is shown in Fig. 6. The frequencies
of the local maxima are f 1 ¼ 405 Hz; and f 2 ¼ 770 Hz; as indicated in Fig. 6. The true rank
distribution of the Cp

� �
matrix is shown in Fig. 7, and the frequencies of the local maxima are

f 3 ¼ 520 Hz; f 4 ¼ 1120 Hz: Note that the rank distribution is calculated from the noise
contaminated signals, and then truncated according to the criterion proposed in this work. The
signal-to-noise ratio will be given later. According to the proposed calculation procedure, only the
data at these four frequencies, i.e., 405, 520, 770, 1120 Hz should be used to identify the number
and locations of the sources.

With this example, the reason for the step (4) of the calculation procedure can be explained
more clearly. As shown in Fig. 5, the main frequencies of source 3 are about from 800 to 1200 Hz.
However, the envelope of average spectrum cannot reflect the main frequencies of source 3
because the spectrum of source 3 is relatively small and is overlapped (or covered) by source 2.
However, the frequency f4 in Fig. 7 can make up the overlook in the envelope of the average
spectrum.
X 

Y 

1S 2S 3S

1M 2M 3M
4M 5M

mrms 80.0=

Fig. 4. The simulated example, one-dimensional case.
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Table 1

Positions of sources and microphones of example 1

Position vectors (x, y) (m)

Point sources r
*

s1
(0.221, 0)

r
*

s2
(0.331, 0)

r
*

s3
(0.451, 0)

Measurement microphones r
*

m1
(0.20, 0.80)

r
*

m2
(0.30, 0.80)

r
*

m3
(0.40, 0.80)

r
*

m4
(0.50, 0.80)

r
*

m5
(0.60, 0.80)

Fig. 5. Spectra of the three simulated sources.
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Although the simulated measurement noise is distributed from 0 to 2000 Hz, only
the noise levels at the selected four frequencies may affect the identification result.
Table 2 shows the signal-to-noise ratios (SNR) at these four frequencies. The SNR is
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Table 2

The signal-to-noise ratios at the selected frequencies

405 Hz 520 Hz 770 Hz 1120 Hz

Noise SNR (dB) Noise SNR (dB) Noise SNR (dB) Noise SNR (dB)

Mic. 1 s1 ¼ 2:1e � 9 62.0 s1 ¼ 3:4e � 10 38.5 s1 ¼ 3:7e � 9 76.4 s1 ¼ 3:0e � 11 48.6

Mic. 2 s2 ¼ 1:6e � 8 53.1 s2 ¼ 3:5e � 9 28.4 s2 ¼ 1:4e � 7 60.7 s2 ¼ 4:6e � 9 27.6

Mic. 3 s3 ¼ 1:8e � 9 62.4 s3 ¼ 2:6e � 9 29.5 s3 ¼ 1:7e � 7 59.9 s3 ¼ 1:9e � 9 32.1

Mic. 4 s4 ¼ 4:3e � 10 68.3 s4 ¼ 1:2e � 11 52.7 s4 ¼ 1:9e � 5 69.2 s4 ¼ 1:8e � 10 42.7

Mic. 5 s5 ¼ 1:0e � 9 64.0 s5 ¼ 1:8e � 10 40.6 s5 ¼ 3:1e � 10 86.8 s5 ¼ 1:0e � 10 45.0
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defined as

SNR oið Þ ¼ 10 log
Ps oið Þ

PN oið Þ

� �
; (16)

where Ps and PN represent the magnitude of the auto-spectra of signal and noise at frequency o1;
respectively. The absolute magnitude of noise is also shown in Table 2. One can find that the noise
values are different in each measurement microphone. The Pm distributions obtained from the
traditional MUSIC method at frequencies f1 to f4 are shown in Fig. 8(a)–(d). The spatial
resolution (or the mesh) used for calculating the Pm distributions is 1 mm along the source line,
Y ¼ 0: Because the Pm distributions were calculated at the source line, theoretically the Pm

distributions should have sharp peaks at the positions of sources. One can find that the positions
of peaks deviate from the positions of sources or there is no local peak in the Pm distribution. The
source positions identified by the traditional MUSIC method are listed in Table 3. The results of
Fig. 8 and Table 3 show clearly the main problem of the traditional MUSIC method. The Pm

distributions obtained from the modified MUSIC method are shown in Fig. 9(a)–(d). Comparing
the results of Figs. (8) and (9) one can find clearly the difference between the traditional and the
modified methods. Note that the peak values at Fig. 9 are very large while the peak values at Fig.
8 are relatively small.

The positions of sources identified by the modified MUCIS method are listed in Table 4. One
can find that the source positions can be identified exactly by the modified MUSIC method. From
the result of Table 4 one also finds that the number of sources is three because only three different
positions are found from the four frequencies.

3.3. Example 2, two-dimensional case

In this example, the three sources are located in a plane, and the detailed coordinates of the
sources and microphones are listed in Table 5. The signals are the same as example 1. According
to the same procedure like example 1, one finds four frequencies, i.e., 410, 525, 790, 1115 Hz, to
identify the number and positions of sources. The absolute noise values and the SNR at these four
frequencies are given in Table 6. To find the positions of sources, the Pm values at all trial field
points should be calculated first and the Pm distribution is then used to find the local maxima. One
cannot find the source positions directly from the Pm values or from the distribution on a single
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Fig. 8. Pm distributions calculated by the traditional MUSIC method, (a) f 1 ¼ 405 Hz; (b) f 2 ¼ 520 Hz; (c) f 3 ¼

770 Hz; (d) f 4 ¼ 1120 Hz:

Table 3

Source positions identified by the traditional MUSIC method

Frequency (Hz) Identified source position (x, y) (m)

405 S11(0.232, 0)

520 No local maximum

770 S31(0.388, 0)

1120 No local maximum

Summary of result

Exact (x, y) (0.221, 0) (0.331, 0) (0.451, 0)

Identified (x, y) (0.232, 0) (0.338, 0) —

J.H. Wang, C. Chang / Journal of Sound and Vibration 284 (2005) 393–420408
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Fig. 9. Pm distributions calculated by the modified method, (a) f 1 ¼ 405 Hz; (b) f 2 ¼ 520 Hz; (c) f 3 ¼ 770 Hz; (d)

f 4 ¼ 1120 Hz:

Table 4

Source positions identified by the modified method

Frequency (Hz) Identified source position (x, y) (m)

405 S11(0.221, 0)

520 S21(0.221, 0), S22(0.331, 0)

770 S31(0.331, 0)

1120 S41(0.331, 0), S42(0.451, 0)

Summary of result

Exact (x, y) (0.221, 0) (0.331, 0) (0.451, 0)

Identified (x, y) (0.221, 0) (0.331, 0) (0.451, 0)

J.H. Wang, C. Chang / Journal of Sound and Vibration 284 (2005) 393–420 409
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Table 5

Positions of sources and microphones of example 2

Position vectors (x, y, z) (m)

Point sources r
*

s1
(0.44, 0.70, 0.22)

r
*

s2
(0.33, 0.70, 0.33)

r
*

s3
(0.22, 0.70, 0.44)

Measurement microphones r
*

m1
(0.20, 0.00, 0.20)

r
*

m2
(0.40, 0.00, 0.20)

r
*

m3
(0.30, 0.10, 0.30)

r
*

m4
(0.20, 0.00, 0.40)

r
*

m5
(0.40, 0.00, 0.40)

Table 6

The signal-to-noise ratios at the selected frequencies, example 2

410 Hz 525 Hz 790 Hz 1115 Hz

Noise SNR (dB) Noise SNR (dB) Noise SNR (dB) Noise SNR (dB)

Mic. 1 s1 ¼ 7:7e � 10 57.6 s1 ¼ 1:3e � 8 21.4 s1 ¼ 3:5e � 9 58.3 s1 ¼ 4:7e � 10 38.1

Mic. 2 s2 ¼ 5:1e � 11 69.7 s2 ¼ 8:4e � 10 34.1 s2 ¼ 2:0e � 9 60.9 s2 ¼ 3:6e � 10 37.4

Mic. 3 s3 ¼ 6:7e � 9 49.7 s3 ¼ 5:3e � 9 27.0 s3 ¼ 1:2e � 8 54.6 s3 ¼ 1:9e � 8 23.4

Mic. 4 s4 ¼ 4:2e � 10 59.9 s4 ¼ 2:6e � 10 38.3 s4 ¼ 3:4e � 10 68.5 s4 ¼ 5:5e � 10 38.7

Mic. 5 s5 ¼ 4:5e � 10 60.0 s5 ¼ 2:4e � 9 29.1 s5 ¼ 4:6e � 10 67.4 s5 ¼ 1:2e � 9 34.0
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plane. However, theoretically the Pm distribution on the source plane (i.e., a source is located on
that plane) should have a sharp local maximum at the position of source. In this example, the three
sources are located on the same plane (Y ¼ 0:7 m), theoretically the source positions can be easily
identified from the Pm distribution on this source plane. Fig. 10(a)–(d) shows the Pm distribution
on the source plane obtained from the traditional MUSIC method. The spatial resolution (or the
mesh of the trial field points) used for the Pm calculation is 1 cm. Only two local maxima were
found from these distributions. The source positions identified by the traditional MUSIC method
are listed in Table 7. Only two source positions can be identified by the traditional method. The Pm

distributions on the source plane obtained from the modified MUSIC method are shown in
Fig. 11(a)–(d). The source positions can be clearly identified from the Pm distributions. The results
identified by the modified method are given in Table 8. Because all the source positions are exactly
located at the mesh points used for calculation, the source positions can be exactly identified by the
modified method. Of course, if the source positions are not exactly located at the mesh points, an
error with one mesh resolution may be found. The result of Table 8 also indicates that the number
of sources is three. It should be pointed out that the peak values of Fig. 10 are relatively small (or
not clear) while the peak values of Fig. 11 are very large (very sharp).
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Fig. 10. Pm distributions on the source plane, calculated by the traditional MUSIC method, (a) f 1 ¼ 410 Hz; (b)

f 2 ¼ 520 Hz; (c) f 3 ¼ 790 Hz; (d) f 4 ¼ 1115 Hz:

Table 7

Source positions identified by the traditional MUSIC method, example 2

Frequency (Hz) Identified source position (x, y, z) (m)

410 S11(0.44, 0.70, 0.22)

525 No local maximum

790 S31(0.33, 0.70, 0.33)

1115 No local maximum

Summary of result

Exact (x, y, z) (0.44, 0.70, 0.22) (0.33, 0.70, 0.33) (0.22, 0.70, 0.44)

Identified (x, y , z) (0.44, 0.70, 0.22) (0.33, 0.70, 0.33) —

J.H. Wang, C. Chang / Journal of Sound and Vibration 284 (2005) 393–420 411
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Fig. 11. Pm distributions on the source plane, calculated by the modified method, (a) f 1 ¼ 410 Hz; (b) f 2 ¼ 525 Hz; (c)

f 3 ¼ 790 Hz; (d) f 4 ¼ 1115 Hz:

Table 8

Source positions identified by the modified method, example 2

Frequency (Hz) Identified source position (x, y, z) (m)

410 S11(0.44, 0.70, 0.22)

525 S21(0.44, 0.70, 0.22), S22(0.33, 0.70, 0.33)

790 S31(0.33, 0.70, 0.33)

1115 S31(0.33, 0.70, 0.33), S42(0.22, 0.70, 0.44)

Summary of result

Exact (x, y, z) (0.44, 0.70, 0.22) (0.33, 0.70, 0.33) (0.22, 0.70, 0.44)

Identified (x, y, z) (0.44, 0.70, 0.22) (0.33, 0.70, 0.33) (0.22, 0.70, 0.44)
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The above two simulated examples demonstrate clearly that
(1)
 The main problem of the traditional MUSIC method can be solved by the modified method.

(2)
 The proposed identification procedure is very efficient, only the data at a few frequencies are

needed to identify the number and positions of sources.
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Here only one- and two- dimensional cases are discussed because it is easier to show the
difference between the traditional and the modified methods by figures. The conclusions obtained
from the above two examples are valid for three-dimensional case.

The feasibility and accuracy of the proposed method were further verified by experiment, as
discussed in the next section.
4. Experimental results and discussions

In this section, the experimental set-up will be described first, and then the experimental results
will be discussed.
4.1. Experimental set-up

The experimental set-up is shown in Fig. 12. The measurement instruments include
(1)
(a)
Anechoic chamber: The anechoic chamber was used to create a free-field condition so that the
transfer function h̄j

� �
in Eq. (12) can be obtained accurately by theoretical method.
(2)
 Speakers: Three speakers were used to simulate three-point sources.

(3)
 Measurement microphones (B&K type 4165): Five measurement microphones were used to

measure the sound pressure simultaneously.

(4)
 Digital data recorders (Sony PC 208A): Two digital data recorders were used. One recorder

was used to record the measured signals; the other recorder was used as player to generate the
source signals which were stored in advance in the tape.
(5)
 Spectrum analyzer (HP35670A): Because the number of measurement channels of the
spectrum analyzer is only four, the spectrum analyzer was used mainly to monitor the
measurement.
(b)

Anechoic Chamber

Speakers Microphones
Power Supply

Digital Signal Recorder

Dynamic Signal Analyzer 

Digital Signal Recorder 

Amplifier 

Fig. 12. (a) Experimental set-up, (b) photo of sources and microphones.



ARTICLE IN PRESS

Table 9

Positions of sources and microphones of experimental example

Position vectors (x, y, z) (m)

Point Sources r
*

s1
(0.085, 0.265, 0.235)

r
*

s2
(0.185, 0.385, 0.210)

r
*

s3
(0.300, 0.335, 0.300)

Measurement microphones r
*

m1
(0.080, 0.020, 0.280)

r
*

m2
(0.280, 0.020, 0.280)

r
*

m3
(0.180, 0.020, 0.180)

r
*

m4
(0.080, 0.020, 0.080)

r
*

m5
(0.280, 0.020, 0.080)
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The three source signals are narrow band random signals with central frequencies at 800, 2000
and 4000 Hz, respectively.

4.2. Results and discussions

The positions of sources and microphones are listed in Table 9. The envelope of the average
pressure spectrum of the five microphones is shown in Fig. 13, and the frequencies of the local
maxima are f 1 ¼ 800 Hz; f 2 ¼ 2000 Hz and f 3 ¼ 3900 Hz: The truncated rank distribution is
shown in Fig. 14, and the frequencies of the local maxima are f 4 ¼ 800 Hz; f 5 ¼ 2800 Hz; f 6 ¼

3900 Hz: Because f1 and f3 are equal to f4 and f6, only the data at four frequencies should be used
to identify the number and locations of sources. One cannot know the measurement noise in this
case. However, the eigenvalues of Eq. (7b) can give us some information about the measurement
noise. The normalized eigenvalues at frequencies 800, 2000, 2800 and 3900 Hz are listed in
Table 10. As indicated in Eq. (9), if the measurement noise levels are identical, then the noise-
eigenvalues should be repeated. For instance, there are only two eigenvalues with significant value
(i.e., larger than 10�6) at frequency 2800 Hz. The other three insignificant eigenvalues are not
equal. That means the measurement noise levels are not equal in each measurement channel at
frequency 2800 Hz. The result of Table 10 indicates that the measurement noise levels generally
are not equal in each measurement channel in practice. To identify the source positions, a space
which includes the three sources were divided in to 80� 80� 80=512,000 trial field points with a
spatial resolution of 0.5 cm. The result identified by the traditional MUSIC method is shown in
Table 11. One can find that the result is completely false, i.e., no local maximum was found in the
searched space. This result is expected because the result of Table 10 indicates that the basic
assumption of the traditional MUSIC method cannot be fulfilled in this case.

To expose the problem of the traditional MUSIC method more clearly, the Pm distribution is
shown here. Because the local maxima of the Pm distribution is very difficult to show in three-
dimensional case, only a typical two-dimensional distribution is shown here. Fig. 15 shows the Pm

distribution on the plane Z ¼ 0:300 on which the source 3 is located. The result was calculated
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with the data at 800 Hz which was the central frequency of source 3. Theoretically, a local
maximum of the Pm distribution should be found at or near x ¼ 0:300; y ¼ 0:335 because the
source 3 is located at that point. However, the Pm distribution found by the traditional MUSIC
method does not show that characteristic. On the contrary, the Pm distribution found by the
modified MUSIC method is shown in Fig. 16. One can find clearly a local maximum at x ¼ 0:300
and y ¼ 0:335: The above results of Pm distributions show clearly the difference between the
traditional and the modified MUSIC methods. The source positions identified by the modified
method are listed in Table 12. As mentioned, the mesh resolution of the trial field points used to
calculate the Pm values is 0.5 cm, the identified positions with a difference equal to the mesh
resolution are considered as the same point. For instance, one of the source positions found at
2800 Hz is (0.185, 0.390, 0.210) and one of the source positions found at 3900 Hz is (0.185, 0.385,
0.210). Because the difference between these two positions is equal to the mesh resolution used for
calculation, these two positions are considered as the same position. The result of Table 12 shows
that the source positions can be accurately identified by the modified MUSIC method. The result
of Table 12 also indicates that the number of sources is three.

The above experimental results demonstrate that the proposed modified MUSIC
method is feasible in practice and show that the identification accuracy of the modified
method is far better than the traditional method. The maximum error identified by the
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Table 10

Normalized eigenvalues at the selected frequencies

800 Hz 2000 Hz 2800 Hz 3900 Hz

l1 2.0e-4 0.07 1.9e-3 1

l2 1.8e-8 5.2e-7 6.6e-5 2.0e-5

l3 1.6e-10 1.8e-8 7.3e-10 7.1e-7

l4 9.5e-11 2.9e-10 2.4e-10 9.8e-9

l5 6.8e-11 1.5e-10 1.1e-10 1.9e-9
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modified method is equal to the mesh resolution. The experimental results also demonstrate that
the proposed calculation procedure is very efficient, only the data at a few frequencies should be
used for identification.
5. Conclusions

The identification of the number and location of acoustic sources is a fundamental problem
of engineering acoustics. The MUSIC method is an important method to solve this
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Table 11

Source positions identified by the traditional MUSIC method

Frequency (Hz) Identified source position (x, y, z) (m)

800 No local maximum

2000 No local maximum

2800 No local maximum

3900 No local maximum

Summary of result

Exact (x, y, z) (0.22, 0.70, 0.22) (0.33, 0.70, 0.33) (0.22, 0.70, 0.44)

Identified (x, y, z) — — —

0.2

0.25

0.3

0.35

0.4

0.2

0.25

0.3

0.35

0.4

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10 -3

X (m)
Y (m)

P
m

Fig. 15. Pm distribution from the traditional MUSIC method, on the plane z ¼ 0:300; 800 Hz.
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problem. However, the tradition MUSIC method functions well only when the un-
avoidable measurement noise is identical for all the measurement channels. In this work,
the traditional MUSIC method was modified to eliminate the basic requirement of the
method. Because the modified method should adjust the measured noise levels in frequency
domain, a calculation procedure was proposed to select only a few ‘‘important’’ frequencies
for identification in order to enhance the calculation efficiency. The numerical and
experimental results demonstrated that the identification accuracy of the proposed method
was far better than that of the traditional MUSIC method. The results also proved that the
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Table 12

Source positions identified by the modified method

Frequency (Hz) Identified source position (x, y, z) (m)

800 S11(0.30, 0.300, 0.300)

2000 S21(0.185, 0.390, 0.210)

2800 S31(0.185, 0.390, 0.210), S32(0.085, 0.265, 0.235)

3900 S41(0.185, 0.385, 0.210), S42(0.085, 0.265, 0.235)

Summary of result

Exact (x, y, z) (0.085, 0.265, 0.235) (0.185, 0.385, 0.210) (0.300, 0.335, 0.300)

Identified (x, y, z) (0.085, 0.265, 0.235) (0.180, 0.385–0.390, 0.210) (0.300, 0.335, 0.300)

J.H. Wang, C. Chang / Journal of Sound and Vibration 284 (2005) 393–420418
proposed calculation procedure was feasible and efficient in practice, only the data at a few
frequencies should be used for identification.
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Appendix A

The ‘‘Property A’’ stated in Section 2.3 was proven in this Appendix. One should prove that
result (b) in Eq. (15) is correct. It is very difficult to prove the result (b) in Eq. (15) directly by a
closed-form formulation. The validity of the result (b) in Eq. (15) was proven indirectly by using
some properties of eigenanalysis of the Cp

� �
matrix. For simplicity, the number of active sources

(or the true rank) was assumed as n in the following derivation. The properties are formulated and
proven in what follows.

Property 1. Only when the measurement noise levels at all the measurement channels are
identical, the noise-eigenvalues are repeated (or identical).

Proof. This is the basic result of the traditional MUSIC method [10], as indicated in Eq. (9). &

Property 2. If the measurement noise levels are not identical, then the noise -eigenvalues will not
be repeated.

Proof. This is an equivalent statement of Property 1. &

Property 3. If an arbitrary positive value d is added to the kth diagonal term of the Cp

� �
matrix

which contains the largest measurement noise, then l̄nþ1=l̄molnþ1=lm is impossible.

Proof. It is assumed that the kth diagonal term of the Cp

� �
matrix contains the largest

measurement noise, and the positive value d is added to that term. If l̄nþ1=l̄molnþ1=lm is
possible, then that means one can add noise repeatedly to the kth diagonal term of the Cp

� �
matrix

to make the ratio l̄nþ1=l̄msmaller and smaller (i.e., chose to one). In the limited case, one can add
noise to the kth diagonal term to make the ratio l̄nþ1=l̄m ¼ 1: This result violates the Property 2.

Thus, l̄nþ1=l̄molnþ1=lm is impossible if a positive value is added to the kth diagonal term of the
Cp

� �
matrix which contains the largest noise level. &
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